US009401957B2

a2z United States Patent (10) Patent No.: US 9,401,957 B2
Roberts 45) Date of Patent: Jul. 26, 2016
(54) SYSTEM AND METHOD FOR 2,35(7),%5 i é;}ggg élleylet al.
) i ucala
SYNCHRONIZATION BETWEEN SERVERS 5742820 A 41998 Perlman et al.
5,761,439 A 6/1998 Kar et al.
(75) Inventor: Andrew Fiske Roberts, Melrose, MA 5819272 A * 10/1998 B:Irlseoril
(as) 5,832,489 A 11/1998 Kucala
5,870,765 A 2/1999 Bauer et al.
: . : : : 5,878,434 A * 3/1999 Draper et al.
(73) Assignee: IC"J:r';::t‘;;‘zlE‘;l‘O“;;sff;Eg'SI‘)es 5884323 A 3/1999 Hawkins et al.
P ’ ’ (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 1114 days. Examination Report received in European Application No. 08 877
208.2-1852, dated Oct. 10, 2013, pp. 1-11.
(21) Appl. No.: 11/855,647 (Continued)
(22) Filed: Sep. 14, 2007 Primary Examiner — Philip Chea
(65) Prior Publication Data Assistant Examiner — ng Ma .
(74) Attorney, Agent, or Firm — Brian J. Colandreo, Esq.;
US 2009/0077262 Al Mar. 19, 2009 Jeffrey T. Placker, Esq.; Holland & Knight LLP
(51) Imt.ClL (57) ABSTRACT
gzgﬁ ;}50/56 888288 A system and method for synchronizing data between two or
GO6F 17/00 (2006.01) more servers including replicating at least a portion of an
HO4L 29/08 (2006.01) original data set, associated with a first server, to provide a
GO6F 11/16 (2006.01) replicated data set, associated with a second server, the rep-
GO6F 17/30 (200 6.01) licated data set based upon, at least in part, the original data
(52) US.Cl ’ set. One or more second-server commands executed on the
N) replicated data set by the second server are stored. One or
CPC oot H04é’061§/{)019f5é20%lf3, ;);/)3’ 0§07ng1011/31%612 more first-server commands to be executed on the original
. . (o); (01) data set by the first server, are provided in which the one or
(58) Field of Classification Search more first-server commands are based upon, at least in part,
CPC s HO4L 67/1095; GOGF 11/1662; GOGF the one or more second-server commands. One or more first-
) 17/30578 server output objects, returned by the first server in response
USPC s 709/221, 248, 250; 797/203, 611 to the one or more first-server commands, are compared to
See application file for complete search history. one or more second-server output objects, returned by the
(56) References Cited second server in response to the one or more second-server

U.S. PATENT DOCUMENTS

5,684,990 A
5,706,509 A

11/1997 Boothby
1/1998 Man-Hak Tso

100

\
__w replicate original
118 data set
\\ genersate
114 R wplicating
~\ commards
.|| PFOvide fnpul]
142 _object identity
\~~—§ map ideotities
102
N 2
116 "

slora commands

o r
118 “’—; store coromands

\\\ store input
120 objects
? ... Qo
el store vutput
122 objects
~—d assaciale
sequentiat order

commands. An identity of one or more first-server output
objects is mapped to an identity of the one or more second-
server output objects.

18 Claims, 12 Drawing Sheets

i 134

| e

provide commands 1

provide input
wbjects

sequentialy 1}
provide

* 106

compare oulput
objects

£OMpats 85
commands are
sequentially
gxecuted

¥

map autpul object
identitles

map ag J
commands are
seguentialy
executed

| I

US 9,401,957 B2

Page 2
(56) References Cited 7,769,722 B1* 82010 Bergantetal. 707/681
8,166,101 B2* 4/2012 Shah GO6F 17/30595
U.S. PATENT DOCUMENTS 709/203
8,510,404 B2* 82013 Carmel HO4L 67/104
5,884,325 A 3/1999 Bauer et al. . . 707/622
5,926,816 A 7/1999 Bauer et al. 2002/0059279 Al 5/2002 Kimetal. ..., 707/100
5970502 A * 10/1999 Salkewicz et al. 2002/0133508 Al* 9/2002 LaRue et al. 707/202
5991,771 A * 11/1999 Falls et al. 2002/0138483 Al* 9/2002 Bretl et al. ... 707/8
6,000,000 A 12/1999 Hawkins et al. 2004/0025072 Al1* 2/2004 Mau 713/400
6,044,381 A 3/2000 Boothby et al. 2004/0034668 Al* 2/2004 Gotz et al. ... 707/201
6,052,735 A 4/2000 Ulrich et al. 2004/0098425 Al* 5/2004 Wissetal. 707/204
6,067,551 A 5/2000 Brown et al. 2004/0153576 Al* 82004 Hansmannetal. ... 709/248
6.088.706 A * 7/2000 Hild 2005/0055382 Al* 3/2005 Ferrat GOGF 17/30575
6125369 A 0/2000 Wu et al. 2005/0071389 Al 3/2005 Gupta
6,131,096 A 10/2000 Nget al. 2005/0165884 Al 7/2005 Masek
6,151,606 A 11/2000 Mendez 2005/0223047 Al* 10/2005 Shah ... GOGF 17/30575
6,192,365 B1* 2/2001 Draperetal.c.......... 707/648 2006/0095447 Al* 5/2006 Dickinson GO6F 17/246
6,223,187 Bl 4/2001 Boothby et al. 2006/0136686 Al 6/2006 Cherkauer et al.
6,256,634 B1* 7/2001 Moshaiov et al. 2006/0242444 Al* 10/2006 Novik ... GOGF 17/30215
6,295,541 Bl 9/2001 Bodnar et al. 713/400
6,363,401 B2* 3/2002 Yahya et al. 2007/0136389 Al* 6/2007 Bergantetal. ... 707/201
6,393,419 Bl* 5/2002 Novak et al. 2007/0226277 Al* 9/2007 Holenstein et al. 707/204
6393434 BI* 52002 Huang et al 2007/0255787 A1* 11/2007 Richardson etal. 709/204
6.446.075 B1* 9/2002 Velaseo ..o 707/610 2008/0028000 Al* 1/2008 Makismenka et al. 707/201
6:487:560 Bl 11/2002 LaRue etal. 2008/0126364 Al* 5/2008 Khosravy HO04L 67/1095
6,516,327 B1* 2/2003 Zondervan et al. 2008/0147781 Al* 6/2008 Hopmannetal. 709/203
6,581,075 Bl 6/2003 Guturu et al.
6,594,664 Bl 7/2003 Estrada et al.
6,615,223 B1* 9/2003 Shih et al. OTHER PUBLICATIONS
*
g:gﬁ:g;g g% % 1;;388?‘ iﬁgﬁ Ztt ﬂ: A}lthor Unknown, “Replicating.and synchror.lizing Data B.etw.een
6,910,053 B1* 6/2005 Pauly et al. Directory Servers,” http://www.isode.com/whitepapers/replication-
7,024,428 Bl 4/2006 Huang et al. sync.html; 2002-2015 Isode Ltd Copyright, downloaded Feb. 1,
7,024,430 BL* 42006 Ingraham et al. 2016, pp. 1-6.
7,127,509 B2* 10/2006 WU oo 709/224 ' P . L . .
7.143419 B2 11/2006 Fischer et al. Dumitriu etal., Pc?e?-to-Peer Wikis: Repllc.atl(?n of nghly Dynamic
7,231,391 B2* 6/2007 Aronoff et al. Content on XWiki,” http://dl.acm.org/citation.cfm?id=1339252,
7,281,024 B1* 10/2007 Banerjee et al. IEEE Computer Society Washington, DC 2007, pp. 361-366.
7441011 B2* 10/2008 Lin oo, GO?(I;& é/l 078?2 Notification of Transmittal of the International Search Report and the
' Written Opinion of the International Searching Authority, or the
*
;’3;‘3’832 g% * lggggg ;Zcr(rﬁs;t;l. Declaration received in International Patent Application No. PCT/
7516.167 B2* 4/2009 Selman et al. 1B2008/005014, Date of Mailing Sep. 16, 2016, pp. 1-25.
7,526,576 B2* 4/2009 Banketal 709/248
7,533,134 B2* 5/2009 Terry et al. * cited by examiner

US 9,401,957 B2

Sheet 1 of 12

Jul. 26, 2016

U.S. Patent

P ttsy)

i

US 9,401,957 B2

Sheet 2 of 12

Jul. 26, 2016

U.S. Patent

poInNcaxa
Ayenuonbas
BIB SPUBIILCD
s dew

SHYIIIP
eigo indine dew

i

pannexe
Aeuanbas
D42 SPUBLRUCD
sg ayeduios

spaiqe
wdinoe asedwes

\

1143

Ipinoid
kgeguanbaes

swafge
tdus apinoad

SPUBLIUOS BAGsd

Y0}

¢

AR IE!

1

38D [RRUanbes
sjenosse

spalqo
ndino sios

i
§
Ji
4

SPUBWIWID SI0)S

H
$

A

......

$

sapnuapt daw

J

ﬁ%_smhu
nduy apinoid m,

SpuBRALDD
Buneondal
ajesaush

S

¢+ e

198 gjep
jeuifuo syeoydas

bore e,

).

.

J

o
&~
-

[=3
N
-

A

@0 b
- -
- -~

P

o™
-
-~

/

<
-
P

e

[
-
o

(g
2
*

U.S. Patent Jul. 26, 2016 Sheet 3 of 12 US 9,401,957 B2

o «
v o
% o0 i
"
(%]
= 2,
& 8
=
S
Q
<
prow)
O
2
L
o

U.S. Patent Jul. 26, 2016 Sheet 4 of 12 US 9,401,957 B2

/

'ectQ/

-
pegd

original data set
object B
object D
FIG. 4

object A

<

e

U.S. Patent Jul. 26, 2016 Sheet 5 of 12 US 9,401,957 B2

offline data set
object 2
FIG. 5

US 9,401,957 B2

Sheet 6 of 12

Jul. 26, 2016

U.S. Patent

9 'Ol

mme e e AA A AAA e AR A W e e S S e daiae e e A ne e Smn e AN A v o

¥ Jooiqo

Epelqn zwalgo { 10slgo

198 BJED aunyo

US 9,401,957 B2

Sheet 7 of 12

Jul. 26, 2016

U.S. Patent

FAR DI
¥ osigo a siqo
¢ 1sigo o weiqo
Z welgo gioaigo
{ olgo vy joeigo

Anuap: pajesidal £ Auspl jpuibuo

US 9,401,957 B2

Sheet 8 of 12

Jul. 26, 2016

U.S. Patent

8 'Oid

ppelgo g slqo

} }
g Josfgo Z palgo | e
S e ok e e e o e o e e e e e 2o o e 7w oo oo e 7 e o o e oo]

|
t
t
§
H
H
}
t
i
I
§
H
H
H

19S Bjep U0

U.S. Patent Jul. 26, 2016 Sheet 9 of 12 US 9,401,957 B2

FIG. 9

original data set
object B
object D

object A
objectE

US 9,401,957 B2

Sheet 10 of 12

Jul. 26, 2016

U.S. Patent

ol ©Oid
§ Joelgo 3 wafqo
¥ J98(qo walgo
¢ afqo 3 wafgo
Z alqo g psfgo
4 efqo v joefgo

Anuspt payeondai 1 Aguapi jeubuo

US 9,401,957 B2

Sheet 11 of 12

Jul. 26, 2016

U.S. Patent

1L Ol
a yelqo 3 algo
43108iqo g 109iqo Vv 108iqo

1es ejep jeuibuo

|

ot
ALY
L

US 9,401,957 B2

Sheet 12 of 12

Jul. 26, 2016

U.S. Patent

L Oltd
gioalqgo 4 Joafgo
g oigo 3 oufao
¥ welqo G welgo
£ 103fqo 0 sigo
Z 308fqo g yalfgo
L 1o9igo v psigo

Anusp payealdas ; Amuapt jeuibuo

|

foed
2
o4

US 9,401,957 B2

1
SYSTEM AND METHOD FOR
SYNCHRONIZATION BETWEEN SERVERS

TECHNICAL FIELD

This disclosure generally relates to synchronizing data
between two or more servers, and more particularly relates to
performing a transformation of commands performed against
one server to modified commands performed against other
servers.

BACKGROUND

Applications that operate against an offline server, and
reconnect with an online server must synchronize data
between the offline server and the online server, e.g., to
account for any changes in data that occurred while operating
against the offline server. Data or record level synchroniza-
tion transters data from the offline database directly to the
online database when the application reconnects with the
online server. The direct data transfer from the offline data-
base to the online database may lead to unrecognized and/or
irreparable conflicts during the synchronization process. For
example, an offline command may produce a new record in
the offline database. However, in the context of the online
database the command may not be allowed or valid. For
example, the user may not have the required privileges to
execute the command. Thus, transferring the data produced or
modified by the command directly from one database to the
other would lead to a conflict in the target database.

One synchronization scheme that seeks to avoid the prob-
lems associated with data or record level synchronization is a
command replay synchronization scheme. In a command
synchronization scheme the command executed against the
offline server may be stored and then replayed against the
online server when the application reconnects to the online
server. However, commands that are executed against the
offline server may not execute in the same manner against the
online server. For example, an offline command may include
references to objects in the offline system that do not exist in
the same context in the online server. Additionally, the online
server may behave differently than the offline server when
executing a command. The difference in behavior may cause
a portion of the remaining commands to have invalid refer-
ences that may cause the portion of the remaining commands
to fail.

SUMMARY OF THE INVENTION

In a first implementation a method includes replicating at
least a portion of an original data set, associated with a first
server, to provide a replicated data set, associated with a
second server, the replicated data set based upon, at least in
part, the original data set. One or more second-server com-
mands executed on the replicated data set by the second server
are stored. One or more first-server commands to be executed
on the original data set by the first server, are provided in
which the one or more first-server commands are based upon,
atleastin part, the one or more second-server commands. One
or more first-server output objects, returned by the first server
in response to the one or more first-server commands, are
compared to one or more second-server output objects,
returned by the second server in response to the one or more
second-server commands. An identity of one or more first-
server output objects is mapped to an identity of the one or
more second-server output objects.

10

15

20

25

30

35

40

45

50

55

60

65

2

One or more of the following features may be included.
Replicating at least a portion of the original data set may
include generating one or more replicating commands to be
executed by the second server. An identity of one or more
objects of the original data set may be mapped to an identity
of'one or more replicated output objects produced by the one
or more replicating commands. Replicating at least a portion
of the original data set may further include providing an
identity of an input object of the one or more replicating
commands based upon, at least in part, the mapped identity of
the one or more objects of the original data set to the identity
of'the one or more replicated output objects.

Storing the one or more second-server commands may
include storing the one or more second-server commands,
storing one or more input objects of the one or more second-
server commands, and storing one or more second-server
output objects produced by the one or more second-server
commands. Comparing the one or more first-server output
objects to the one or more second-server output objects may
include comparing the one or more first-server output objects,
returned by the first server in response to the one or more
first-server commands, to the stored one or more second-
server output objects.

Providing the one or more first-server commands may
include providing one or more first-server input objects based
upon, at least in part, the mapped identity of the one or more
first-server output objects to the identity of the one or more
second-server output objects. Storing the one or more second-
server commands may include associating a sequential order
with the second server commands. Further, providing the one
ormore first-server commands based upon, at least in part, the
one or more second-server commands, may include sequen-
tially providing the one or more first-server commands in an
order based upon, at least in part, the sequential order of the
second-server commands. Comparing the one or more first
server output objects to the one or more second server output
objects may include comparing each of the one or more
first-server output objects, returned by the first server in
response to each of the one or more first-server commands, to
the one or more second-server output objects, returned by the
second server in response to the one or more second-server
commands as the one or more first server commands are
sequentially executed. Additionally, an identity of each of the
one or more first-server output objects may be mapped to an
identity of the one or more second-server output objects as the
one or more first server commands are sequentially executed.

The first server may include an online server and the sec-
ond server may include an offline server.

In another implementation, a computer program product
residing on a computer readable medium has a plurality of
instructions stored thereon. When executed by a processor,
the instructions cause the process to perform operations
including replicating at least a portion of an original data set,
associated with a first server, to provide a replicated data set,
associated with a second server, the replicated data set based
upon, at least in part, the original data set. One or more
second-server commands executed on the replicated data set
by the second server are stored. One or more first-server
commands to be executed on the original data set by the first
server, are provided in which the one or more first-server
commands is based upon, at least in part, the one or more
second-server commands. One or more first-server output
objects, returned by the first server in response to the one or
more first-server commands, are compared to one or more
second-server output objects, returned by the second server in
response to the one or more second-server commands. An

US 9,401,957 B2

3

identity of one or more first-server output objects are mapped
to an identity of the one or more second-server output objects.

One or more of the following features may be included.
The instructions for replicating at least a portion of the origi-
nal data set may include instructions for generating one or
more replicating commands to be executed by the second
server. The instructions for replicating at least a portion of the
original data set may further include instructions for mapping
an identity of one or more objects of the original data set to an
identity of one or more replicated output objects produced by
the one or more replicating commands. The instructions for
replicating at least a portion of the original data set may
include instructions for providing an identity of an input
object of the one or more replicating commands based upon,
at least in part, the mapped identity of the one or more objects
of the original data set to the identity of the one or more
replicated output objects.

The instructions for storing the one or more second-server
commands may include instructions for storing the one or
more second-server commands, storing one or more input
objects of the one or more second-server commands, and
storing one or more second-server output objects produced by
the one or more second-server commands. Further, the
instructions for comparing the one or more first-server output
objects to the one or more second-server output objects may
include instructions for comparing the one or more first-
server output objects, returned by the first server in response
to the one or more first-server commands, to the stored one or
more second-server output objects.

The instructions for providing the one or more first-server
commands may include instructions for providing one or
more first-server input objects based upon, at least in part, the
mapped identity of the one or more first-server output objects
to the identity of the one or more second-server output
objects. The instructions for storing the one or more second-
server commands may include instructions for associating a
sequential order with the second server commands. Further,
the instructions for providing the one or more first-server
commands based upon, at least in part, the one or more
second-server commands, may include instructions for
sequentially providing the one or more first-server commands
in an order based upon, at least in part, the sequential order of
the second-server commands. Additionally, the instructions
for comparing the one or more first server output objects to
the one or more second server output objects may include
instructions for comparing each of the one or more first-server
output objects, returned by the first server in response to each
of the one or more first-server commands, to the one or more
second-server output objects, returned by the second server in
response to the one or more second-server commands as the
one or more first server commands are sequentially executed.
Additionally, an identity of each of the one or more first-
server output objects may be mapped to an identity of the one
or more second-server output objects as the one or more first
server commands are sequentially executed.

The first server may include an online server. The second
server may include an offline server.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Other
features and advantages will become apparent from the
description, the drawings, and the claim.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1is a diagrammatic view of a synchronization process
and a first and a second server application coupled to a dis-
tributed computing network.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 is a flow chart of a process executed by the synchro-
nization process of FIG. 1.

FIG. 3 diagrammatically depicts a data set associated with
the first server application of FIG. 1.

FIG. 4 diagrammatically depicts a data set associated with
the first server application of FIG. 1.

FIG. 5 diagrammatically depicts a data set associated with
the second server application of FIG. 1.

FIG. 6 diagrammatically depicts a data set associated with
the second server application of FIG. 1.

FIG. 7 diagrammatically depicts an identity map.

FIG. 8 diagrammatically depicts a data set associated with
the second server application of FIG. 1.

FIG. 9 diagrammatically depicts a data set associated with
the first server application of FIG. 1.

FIG. 10 diagrammatically depicts an identity map.

FIG. 11 diagrammatically depicts a data set associated with
the first server application of FIG. 1.

FIG. 12 diagrammatically depicts an identity map.

DETAILED DESCRIPTION OF THE
DISCLOSURE

Referring to FIG. 1, there is shown synchronization pro-
cess 10q that may reside on and may be executed by a client
electronic device (e.g., personal computer 12) which may be
connected to network 14 (e.g., the Internet or a local area
network). While for clarity synchronization process 10a is
only shown and described associated with client electronic
device 12, it should be understood that synchronization pro-
cess 10a may reside on and be executed various other client
electronic devices (e.g., client electronic devices 16, 18, and
20) in a corresponding manner. Examples of client electronic
device may include, but are not limited to: a personal com-
puter (e.g., personal computer 12), a laptop computer (e.g.,
laptop computer 16), a personal digital assistant (e.g., per-
sonal digital assistant 18), and a notebook computer (e.g.,
notebook computer 20). Client electronic devices 12, may
execute an operating system, examples of which may include
but are not limited to Microsoft Windows™, Microsoft Win-
dows CE™, Redhat Linux™, or a custom operating system.

The instruction sets and subroutines of synchronization
process 10a, which may be stored on a storage device (e.g.,
storage device 22 coupled to client electronic device 12, inthe
illustrated example) may be executed by one or more proces-
sors (not shown) and one or more memory architectures (not
shown) incorporated into client electronic device 12. Storage
device 22 (e.g., a computer readable storage medium limited
to non-transitory media) may include but is not limited to:
hard disk drives; tape drives; optical drives; RAID arrays;
random access memories (RAM); read-only memories
(ROM), compact flash (CF) storage devices, secure digital
(SD) storage devices, and a memory stick storage devices.

Client electronic device 12 may also execute a client appli-
cation (e.g., client application 24). Client application 24 may
be anapplication capable of issuing commands to one or more
server applications (e.g., first server application 26).
Examples of client application 22 may include, for example,
an email client application, a calendar and scheduling appli-
cation, a document management application, a database
application, etc. The instruction sets and subroutines of client
application 24, which may be stored on storage device 22
coupled to client electronic device 12, may be executed by
one or more processors (not shown) and one or more memory
architectures (not shown) incorporated into client electronic
device 12. Synchronization process 10 may be a stand alone

US 9,401,957 B2

5

application that interfaces with client application 24 or an
applet/application that is executed within client application
24.

A server computer (e.g., server computer 28) may execute
first server application 26. Generally, first server application
26 may be any application which may execute commands
issued by one or more client applications (e.g., client appli-
cation 24, 30, 32, 34) via a defined command interface.
Examples of first server application 26 may include but are
not limited to an email server application, a calendar and
scheduling server application, a document management
server application, a database server application, etc. The
instruction sets and subroutines of first server application 26,
which may be stored on storage device 36 coupled to server
computer 28 may be executed by one or more processors (not
shown) and one or more memory architectures (not shown)
incorporated into server computer 28.

In addition/as an alternative to being a client-side applica-
tion residing on client electronic device 12, the synchroniza-
tion process may be a server-side application (e.g., server-
side synchronization process 105) residing on a storage
device (e.g., stored on storage devices 30) coupled to one or
more server computers (e.g., server computer 28). As a
server-side application, synchronization process 105 may, for
example, be a stand alone application that may interface with
an a server application (e.g., first server application 26), or
may be an applet/application that is executed within server
application. Accordingly, the synchronization process may be
a server-side process, a client-side process and/or may be a
hybrid client-side/server-side process, which may be
executed, in whole or in part, by a client electronic device and
by a server computer.

Server computer 28 may be a web server (or a series of
servers) running a network operating system, examples of
which may include but are not limited to: Microsoft Windows
2003 Server™; Novell Netware™; or Redhat Linux™, for
example. Additionally, server computer 28 may execute a
web server application, examples of which may include but
are not limited to: Microsoft IIS™, Novell Webserver™, or
Apache Webserver™, that allows for HT'TP (i.e., HyperText
Transfer Protocol) access to server computer 28 via network
14. Network 14 may be connected to one or more secondary
networks (e.g., network 38), examples of which may include
but are not limited to: a local area network; a wide area
network; or an intranet, for example.

The instruction sets and subroutines of client applications
12,30, 32, 34, which may be stored on storage devices 22, 40,
42, 44 (respectively) and/or coupled to client electronic
devices 12, 16, 18, 20 (respectively), may be executed by one
or more processors (not shown) and one or more memory
architectures (not shown) incorporated into client electronic
devices 12, 16, 18, 20 (respectively). Storage devices 22, 40,
42, 44 (e.g., computer readable storage media limited to non-
transitory media) may include but are not limited to: hard disk
drives; tape drives; optical drives; RAID arrays; random
access memories (RAM); read-only memories (ROM), com-
pact flash (CF) storage devices, secure digital (SD) storage
devices, and memory stick storage devices. As mentioned
above, examples of client electronic devices may include, but
are not limited to, personal computer 12, laptop computer 16,
personal digital assistant 18, notebook computer 20, a data-
enabled, cellular telephone (not shown), and a dedicated net-
work device (not shown), for example. Using client applica-
tions 24,30, 32,34, users 46, 48, 50, 52 may access first server
application 26.

Additionally, one or more additional server application
(e.g., second server application 54) may reside on and be

10

15

20

25

30

35

40

45

50

55

60

65

6

executed by one or more additional computing devices (e.g.,
may reside on storage device 22 coupled to client electronic
device 12). Second server application 54 may utilize the same
command interface as first server application 26. For
example, second server application 54 may be an instance of
the same application as first server application 26, or may be
a different application utilizing the same command interface.
Users 46, 48, 50, 52 may also access second server applica-
tion 54 using client applications 24, 30, 32, 34.

Users 46, 48, 50, 52 may access first server application 26
directly through the device on which the client application
(e.g., client applications 24, 30, 32, 34) is executed, namely
client electronic devices 12,16, 18, 20, for example. Users 46,
48, 50, 52 may access first server application 26 directly
through network 14 or through secondary network 38. Fur-
ther, server computer 28 (i.e., the computer that executes first
server application 26) may be connected to network 14
through secondary network 38, as illustrated with phantom
link line 56.

The various client electronic devices may be directly or
indirectly coupled to network 14 (or network 38). For
example, personal computer 12 is shown directly coupled to
network 14 via a hardwired network connection. Further,
notebook computer 20 is shown directly coupled to network
38 via a hardwired network connection. Laptop computer 16
is shown wirelessly coupled to network 14 via wireless com-
munication channel 58 established between laptop computer
16 and wireless access point (i.e., WAP) 60, which is shown
directly coupled to network 14. WAP 60 may be, for example,
an [EEE 802.11a, 802.11b, 802.11g, Wi-Fi, and/or Bluetooth
device that is capable of establishing wireless communication
channel 58 between laptop computer 16 and WAP 60. Per-
sonal digital assistant 18 is shown wirelessly coupled to net-
work 14 via wireless communication channel 62 established
between personal digital assistant 18 and cellular network/
bridge 64, which is shown directly coupled to network 14.

As is known in the art, all of the IEEE 802.11x specifica-
tions may use Ethernet protocol and carrier sense multiple
access with collision avoidance (i.e., CSMA/CA) for path
sharing. The various 802.11x specifications may use phase-
shift keying (i.e., PSK) modulation or complementary code
keying (i.e., CCK) modulation, for example. As is known in
the art, Bluetooth is a telecommunications industry specifi-
cation that allows e.g., mobile phones, computers, and per-
sonal digital assistants to be interconnected using a short-
range wireless connection.

Synchronization Process

Referring also to FIG. 2, synchronization process 10a, 105
may replicate 100 at least a portion of an original data set
associated with a first server, to provide a replicated data set,
associated with a second server, the replicated data set based
upon, at least in part, the original data set. Additionally, syn-
chronization process 10a, 105 may store 102 one or more
second-server commands executed on the replicated data set
by the second server. One or more first-server commands to
be executed on the original data set by the first server, may be
provided 104 in which the one or more first-server commands
are based upon, at least in part, the one or more second-server
commands. One or more first-server output objects, returned
by the first server in response to the one or more first-server
commands, may be compared 106 to one or more second-
server output objects, returned by the second server in
response to the one or more second-server commands. An
identity of one or more first-server output objects may be
mapped 108 to an identity of the one or more second-server
output objects.

US 9,401,957 B2

7

Continuing with the above-stated example, and referring
also to FIG. 3, using client application 24 a user, e.g., user 46,
may manipulate original data set 150 (e.g., residing on stor-
age device 36) associated with first server application 26, e.g.,
by issuing commands, via client application 24, to first server
application 26. For example, as shown, original data set 150
may include one or more objects (e.g., which may be, for
example, files, containers, applications, and the like), namely
object “A”, and object “B”. Of course, original data set 150
may include any number of objects of various natures.

First server application 26 may, e.g., in response to com-
mands issued by client application 24, add, modify, delete,
etc. objects within original data set 150. For example, and
referring also to FIG. 4, user 46 may, via client application 24,
issue commands to first server application 26 to create object
“C” in original data set 150. Additionally, user 46 may, via
client application 24, issue commands to first server applica-
tion 26 to modify object “A” to provide modified object “A”
in original data set 150. User 46 may, via client application 24,
also issue commands to first server application 26 to add child
object “D” to object “B”. Similarly, user 46 may, via client
application 24, issue commands to first server application 26
to delete object “C” (e.g., diagrammatically represented by X
through object “C”).

User 46 may replicate 100 at least a portion of original data
set 150, associated with first server application 26, to provide
a replicated data set associated with a second server applica-
tion (e.g., second server application 54) based upon, at leastin
part, original data set 150. By replicating 100 at least a portion
of original data set 150, user 46 may continue to utilize client
application 24, e.g., to add, modify, delete, etc., objects with-
out accessing first server application 26 and original data set
150 associated with first server application 26. For example,
first server application 26 may be an online server application
accessed via network 14. Similarly, second server application
54 may be an offline server, e.g., allowing user 46 to utilize
client application 24 to access second server application 54
and manipulate the replicated data set when client electronic
device 12 is not coupled to server computer 28 (e.g., when
client electronic device 12 and/or server computer 26 are not
coupled to network 14). User 46 may cause synchronization
process 10a, 105 to replicate 100 at least a portion of original
data set 150, e.g., by issuing, via client application 24, a
synchronization command, logging off of first server appli-
cation 26, logging off of client application 24, or any other
suitable mechanism.

Replicating 100 at least a portion of the original data set
may include generating 110 one or more replicating com-
mands to be executed by the second server. For example, user
46 may issue, via client application 24, a synchronization
command causing synchronization process 10a, 105 to rep-
licate 100 at least a portion of original data set 150.

Referring also to FIG. 5, offline data set 200 may reside on
storage device 22 coupled to client electronic device 12.
Offline data set 200 may be associated with second server
application 54. Offline data set 200 may include one or more
objects, namely object “2”. In response to the synchroniza-
tion command, one or more of synchronization process 10a,
105, client application 24, first server application 26, and/or
second server application 54 may generate 110 one or more
replicating commands which, when executed by second
server application 54, may create the replicated data set based
upon, at least in part, original data set 150.

For example, in part, first server application 26 may pro-
vide one or more commands representing original data set
150. The generated 110 replicating commands may be based
upon, at least in part, the one or more commands provided by

5

10

15

20

25

30

40

45

55

60

65

8

first server application 26. When executed by second server
application 54, the generated 110 replicating commands may
modify offline data set 200 to provide the replicated data set,
e.g., by creating, deleting, moditying, etc. one or more objects
in offline data set 200. Accordingly, generated 110 replicating
commands may provide one or more objects in the replicated
data set based upon, at least in part, the commands provided
by first server application 26. Continuing with the above-
stated example, the commands provided by first server appli-
cation 26 may include, for example, at least in part: add object
“A”, add object “B”, add object “C”, add child object “D” to
object “B”, remove object “C” and modify object “A”.

Synchronization process 10a, 106 may map 112 an identity
of'one or more objects of the original data set to an identity of
one or more replicated output objects produced by the one or
more replicating commands. For example, and referring also
to FIG. 6, second server application 54 may utilize a different
object naming scheme than first server application 26. As
such, a generated 110 replicating command to create object
“A” may result in second server application 54 creating object
“1” in offline data set 200, as part of replicated data set 202.
Synchronization process 10a, 1056 may map 112 the identity
of object “A” in original data set 150 to the identity of object
“1” in replicated data set 202, as shown in FIG. 7.

Continuing with the above stated example, one or more of
synchronization process 10a, 105, client application 24, first
server application 26, and/or second server application 54
may recognize that object “2” in oftline data set 200 corre-
sponds to object “B” in original data set 150 (e.g., object “B”
may have previously been mapped to object “2”). As such, a
generated 110 replicating commands may modify object “2”
in offline data set 200 to provide, in replicated data set 202, a
replicated object based upon, at least in part, object “B”. The
identity of object “B” may be mapped 112 to the identity of
object “2”. Additionally, a generated 110 replicating com-
mand may result in second server application 54 creating, in
replicated data set 202, object “3” based upon, at least in part,
object “C”.

As shown in FIG. 7 one or more of synchronization process
104, client application 24, and/or second server application
54 may create identity map 250. Identity map 250 may cor-
relate the identities of one or more objects in original data set
150 with the identities of one or more objects in replicated
data set 202, in which at least a portion of the one or more
objects in replicated data set 202 may be based upon, at least
in part, the one or more objects in original data set 150.

Replicating 100 at least a portion of the original data set
may further include providing 114 an identity of an input
object of the one or more replicating commands based upon,
at least in part, the mapped identity of the one or more objects
of the original data set to the identity of the one or more
replicated output objects. Continuing with the above stated
example, a replicating command may be generated 110 to
provide a replicated object based upon, at least in part, a
command provided by first server application 26 to add object
“D” as a child of object “B”. As object “2” has been provided
in replicated data set 202 as an object based upon, at least in
part, object “B” of original data set 150 (e.g., as reflected in
identity map 250), the generated 110 replicating command
may provide 114 an identity of object “2” as an input to the
replicating command. As such, rather than providing a repli-
cating command to add object “D” as a child of object “B”,
the replicating command may be, for example, add object “D”
asachild of object “2”. The result of the replicating command
may be object “4” added to object “2” in replicated data set
202. Object “4” may be based upon object “D” in original data
set 150. In the foregoing manner, the generated 110 replicat-

US 9,401,957 B2

9

ing command may reference the mapped 112 identities of
objects in replicated data set 202 to identities of objects in
original data set 150 for creating, adding, deleting, or modi-
fying replicated objects that reference the identity of one or
more previously created, added, deleted, or modified objects
in replicated data set 202.

Similar to the addition of child object “4” to object “27,
described above, a command provided by first server appli-
cation 26 to modify object “A” may result in generating 110
a replicating command to modify object “1” based upon the
mapped 112 identity of object “A” to object “1”. That is, an
identity of input object “1” of the one or more replicating
commands may be provided 114 based upon, at least in part,
the mapped identity of object “A” to object “1”.

Furthermore, based upon the command provided by first
server application 26, a replicating command may be gener-
ated 110 to delete object “3” (correlated to object “C” in
original data set 150) from replicated data set 202 (e.g., dia-
grammatically represented by X through object “3” in FIG.
6). Alternatively, based upon commands provided by first
server application 26 to both create and delete object “C”,
generated 110 replicating commands may not add an object
based upon, at least in part, object “C” in the first place.

Using client application 24, user 46 may perform various
operations (e.g., by issuing commands via client application
24 which may be executed by second server application 54)
on replicated data set 202. For example, and referring also to
FIG. 8, user 46 may cause client application 24 to issue a
command to second server application 54 that results in cre-
ating new object “5”. User 46 may also, via client application
24, associate (e.g., as a child) object “5” with object “1”.
Additionally, user 46 may modify object “1” of replicated
data set 202 to provide modified object “1”. Further, user 46
may, via client application 24, create new object “6” in rep-
licated data set 202. As mentioned previously, synchroniza-
tion process 10a may store 102 the one or more second-server
commands executed on the replicated data set by the second
server.

Storing 102 the one or more second-server commands may
include storing 116 the one or more second-server com-
mands, storing 118 one or more input objects of the one or
more second-server commands, and storing 120 one or more
second-server output objects produced by the one or more
second-server commands. For example, when user 46 modi-
fies object “1” (i.e., via client application 24 issuing com-
mands to second server application 54), synchronization pro-
cess 10 may store 116 the modify command.
Synchronization process 10a may also store 118 one or more
input objects of the modify command (e.g., including object
“1”). Synchronization process 10 may also store 120 output
object (e.g., modified object “1”) produced by the modify
command. For example, a command to modify object “1” by
changing a name attribute to “Bill” may result in a stored
command of, for example, command name: “modify”, input
(i.e., input argument) 1: object “1”, input (i.e., input argu-
ment) 2: “name”, and input (i.e., input argument) 3: “Bill”,
resulting in output object: modified object “1”.

Storing 102 the one or more second-server commands may
include associating 122 a sequential order with the second
server commands. Continuing with the above-stated
example, commands issued by client application 24 to second
server application 54 may have first created object “5”, and
next associated object “5” with object “3”, and subsequently
modified object “1”, and created object “6”. Synchronization
process 10a may associate 122 a sequential order (e.g., first
create object “5”, second associate object “5” with object “17,

10

15

20

25

30

35

40

45

50

55

60

65

10
third modify object “1”, fourth create object “6”) with the
stored 102 second server commands.

When user 46 again accesses first server application 26,
one or more of synchronization process 10a, 105, client appli-
cation 24, first server application 26, and/or second server
application 54 may synchronize offline data set 200 and origi-
nal data set 150. Synchronizing offline data set 200 and origi-
nal data set 150 may include providing 104 one or more
first-server commands to be executed on the original data set
by the first server. The one or more first-server commands
may be based upon, at least in part, the stored 102 one or more
second-server commands. For example, the one or more
stored 102 second server commands may be replayed against
original data set 150. Further, providing 104 the one or more
first-server commands based upon, at least in part, the one or
more second-server commands, may include 124 sequen-
tially providing the one or more first-server commands in an
order based upon, at least in part, the sequential order of the
second-server commands.

Continuing with the above-stated example, and referring
also to FIG. 9, the first command provided 104 may be to
create object “5”. First server application 26 may execute the
command to create object “5”. Based upon, at least in part, the
different object naming scheme, the command executed by
first server application 26 to create object “5” may result in
first server application 26 creating object “E” in original data
set 150.

One or more of synchronization process 10a, 105, client
application 24, first server application 26, and/or second
server application 54 may compare 106 one or more first-
server output objects (e.g., object “E”), returned by the first
server (e.g., first server application 26) in response to the one
or more first server commands, to one or more second server
output objects (e.g., object “5”), returned by the second server
(e.g., second server application 54) in response to the one or
more second server commands. In this regard, comparing 106
the one or more first-server output objects (e.g., object “E”) to
the one or more second-server output objects (e.g., object
“5”) may include comparing the one or more first-server
output objects (e.g., object “E”), returned by the first server
(e.g., first server application 26) in response to the one or
more first-server commands, to the stored 102 one or more
second-server output objects (e.g., object “5”). Additionally,
in an embodiment in which the first-server commands are
sequentially provided 124, comparing 106 the one or more
first-server output objects (e.g., object “E”) to the one or more
second-server output objects (e.g., object “5””) may include
sequentially comparing 126 each of the one or more first-
server output objects (e.g., object “E”), returned by the first
server (e.g., first server application 26) in response to each of
the one or more first-server commands, to the one or more
second-server output objects (e.g., object “57), returned by
the second server (e.g., second server application 54) in
response to the one or more second-server commands as the
one or more first server commands are sequentially executed.

Continuing with the above-stated example, one or more of
synchronization process 10a, 105, client application 24, first
server application 26, and/or second server application 54
may compare 106 object “E” to object “5”. An identity of one
or more first-server output objects may be mapped 108 to an
identity of the one or more second-server output objects. For
example, and referring also to FIG. 10, one or more of syn-
chronization process 10a, 105, client application 24, first
server application 26, and/or second server application 54
may update identity map 250 to map the identity of object “E”
in original data set 150 to the identity of object “5” in offline
data set 200. Again, in an embodiment in which first-server

US 9,401,957 B2

11

commands may be sequentially provided 124, an identity of
each of the one or more first-server output objects may be
mapped 128 to an identity of the one or more second-server
output objects as the one or more first server commands are
sequentially executed (e.g., sequentially mapped).

Providing 104 the one or more first-server commands may
include providing 130 one or more first-server input objects
based upon, at least in part, the mapped identity of the one or
more first-server output objects to the identity of the one or
more second-server output objects. Continuing with the
above-stated example, one or more of synchronization pro-
cess 10a, 105, client application 26, first server application
26, and/or second server application 54 may next provide a
first-server command (e.g., a command to first server appli-
cation 26) based upon the command to associate object “5”
with object “3”. Based upon, at least in part, the mapped
identities of the objects in original data set 150 and of the
objects in offline data set 200, a command may be provided to
associate object “E” in original data set 150 with object “A” in
original data set 150. That is, the identity of the input object(s)
for the command provided 104 to first server application 26
may be based upon, at least in part, the mapped identities of
objects (e.g., object “E” and object “A”) in original data set
150 to objects (e.g., object “5” and object “1”) in offline data
set 200. As such, object “E” may be associated with object
“A” in original data set 150, based upon, at least in part, the
association between object “5” and object “1” in offline data
set 200.

Similarly, a first server command may be provided 104 to
modify object “A” to change the name attribute to “Bill”. The
command input object may be based upon, at least in part, the
mapped identity of offline object “1” to original object “A”.
As such, the command provided may be to modify the name
attribute of original object “A” to “Bill”.

As discussed previously, differences in object naming
(identities provided to objects) between original data set 150
and offline data set 200 may occur, for example, as a result of
different object naming schemes utilized by first server appli-
cation 26 and second server application. However, differ-
ences in object naming may occur for various addition/alter-
native reasons. For example, a user may not have the
necessary permissions to add, delete, or modify an object, an
object to be added, deleted, or modified may create a conflict
with another object, as well as various other reasons.

Continuing with the above stated example, and referring
also to FIG. 11, one or more of synchronization process 10a,
105, client application 24, first server application 26, and/or
second server application 54 may provide 104 a command to
first server application 26 based upon the command executed
by second server application 54 to create object “6”. How-
ever, user 46 may not have sufficient permissions to create
object “6”. Based upon, at least in part, user 46’s insufficient
permissions to create object “6”, first server application 26
may fail to create object “6” and may return an error message.
Alternatively, in view of user 46’s insufficient permissions,
rather than trying to create object “6” (e.g., which would
result in a failure), synchronization process 10a, 105, client
application 24, first server application 26, and/or second
server application 54 may provide 104 a command to create
new object “F” in original data set 150 (e.g., in original data
set 150, in a conflict folder, or other location and/or container;
not shown). New object “F”” may be based upon object “6”.
Identity map 250 may be updated to indicate the mapped
identity of object “6” in offline data set 200 to object “F” in
original data set 150, as shown in FIG. 12.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications

10

15

20

25

30

35

40

45

50

55

60

65

12

may be made. Accordingly, other implementation are within
the scope of the following claims.
What is claimed is:
1. A method comprising:
replicating at least a portion of an original data set, associ-
ated with a first server, to provide a replicated data set,
associated with a second server, the replicated data set
based upon, at least in part, the original data set;

storing one or more second-server commands executed on
the replicated data set by the second server;
providing one or more first-server commands to be
executed on the original data set by the first server, the
one or more first-server commands based upon, at least
in part, the one or more second-server commands;

comparing one or more first-server output objects, returned
by the first server in response to the one or more first-
server commands, to one or more second-server output
objects, returned by the second server in response to the
one or more second-server commands;

mapping an identity of one or more first-server output

objects to an identity of the one or more second-server
output objects;
wherein providing the one or more first-server commands
includes providing one or more first-server input objects
based upon, at least in part, the mapped identity of the
one or more first-server output objects to the identity of
the one or more second-server output objects, and
wherein providing the one or more first-server com-
mands includes determining insufficient permissions
associated with the second-server commands and gen-
erating an error based on the insufficient permissions;

in response to the insufficient permissions associated with
the second-server commands, creating a new first-server
output object in a conflict location on the first server and
executing the one or more second-server commands
associated with the insufficient permissions on the new
first-server output object; and

mapping an identity of the new first-server output object to

at least one of the one or more second-server output
objects associated with the insufficient permissions and
the second-server commands.

2. The method of claim 1, wherein replicating at least a
portion of the original data set includes generating one or
more replicating commands to be executed by the second
server; and mapping an identity of one or more objects of the
original data set to an identity of one or more replicated output
objects produced by the one or more replicating commands,
and wherein replicating at least a portion of the original data
set includes providing an identity of an input object of the one
ormore replicating commands based upon, at least in part, the
mapped identity of the one or more objects of the original data
set to the identity of the one or more replicated output objects.

3. The method of claim 1, wherein storing the one or more
second-server commands includes storing the one or more
second-server commands, storing one or more input objects
of'the one or more second-server commands, and storing one
or more second-server output objects produced by the one or
more second-server commands.

4. The method of claim 3, wherein comparing the one or
more first-server output objects to the one or more second-
server output objects includes comparing the one or more
first-server output objects, returned by the first server in
response to the one or more first-server commands, to the
stored one or more second-server output objects.

5. The method of claim 1, wherein storing the one or more
second-server commands includes associating a sequential
order with the second server commands.

US 9,401,957 B2

13

6. The method of claim 5, wherein providing the one or
more first-server commands based upon, at least in part, the
one or more second-server commands, includes sequentially
providing the one or more first-server commands in an order
based upon, at least in part, the sequential order of the second-
server commands.

7. The method of claim 6, wherein comparing the one or
more first server output objects to the one or more second
server output objects includes comparing each of the one or
more first-server output objects, returned by the first server in
response to each of the one or more first-server commands, to
the one or more second-server output objects, returned by the
second server in response to the one or more second-server
commands as the one or more first server commands are
sequentially executed; and

mapping an identity of each of the one or more first-server

output objects to an identity of the one or more second-
server output objects as the one or more first server
commands are sequentially executed.
8. The method of claim 1, wherein the first server includes
an online server and the second server includes an offline
server.
9. A computer program product residing on a computer
readable non-transitory storage medium having a plurality of
instructions stored thereon which, when executed by a pro-
cessor, cause the process to perform operations comprising:
replicating at least a portion of an original data set, associ-
ated with a first server, to provide a replicated data set,
associated with a second server, the replicated data set
based upon, at least in part, the original data set;

storing one or more second-server commands executed on
the replicated data set by the second server;
providing one or more first-server commands to be
executed on the original data set by the first server, the
one or more first-server commands based upon, at least
in part, the one or more second-server commands;

comparing one or more first-server output objects, returned
by the first server in response to the one or more first-
server commands, to one or more second-server output
objects, returned by the second server in response to the
one or more second-server commands;

mapping an identity of one or more first-server output

objects to an identity of the one or more second-server
output objects;
wherein providing the one or more first-server commands
includes providing one or more first-server input objects
based upon, at least in part, the mapped identity of the
one or more first-server output objects to the identity of
the one or more second-server output objects, and
wherein providing the one or more first-server com-
mands includes determining insufficient permissions
associated with the second-server commands and gen-
erating an error based on the insufficient permissions;

in response to the insufficient permissions associated with
the second-server commands, creating a new first-server
output object in a conflict location on the first server and
executing the one or more second-server commands
associated with the insufficient permissions on the new
first-server output object; and

mapping an identity of the new first-server output object to

at least one of the one or more second-server output
objects associated with the insufficient permissions and
the second-server commands.

10

15

20

25

30

35

40

45

50

55

60

14

10. The computer program product of claim 9, wherein the
instructions for replicating at least a portion of the original
data set include instructions for generating one or more rep-
licating commands to be executed by the second server; and
mapping an identity of one or more objects of the original data
set to an identity of one or more replicated output objects
produced by the one or more replicating commands, and
wherein the instructions for replicating at least a portion of the
original data set include instructions for providing an identity
of'an input object of the one or more replicating commands
based upon, at least in part, the mapped identity of the one or
more objects of the original data set to the identity of the one
or more replicated output objects.

11. The computer program product of claim 9, wherein the
instructions for storing the one or more second-server com-
mands include instructions for storing the one or more sec-
ond-server commands, storing one or more input objects of
the one or more second-server commands, and storing one or
more second-server output objects produced by the one or
more second-server commands.

12. The computer program product of claim 11, wherein
the instructions for comparing the one or more first-server
output objects to the one or more second-server output objects
include instructions for comparing the one or more first-
server output objects, returned by the first server in response
to the one or more first-server commands, to the stored one or
more second-server output objects.

13. The computer program product of claim 9, wherein the
instructions for storing the one or more second-server com-
mands include instructions for associating a sequential order
with the second server commands.

14. The computer program product of claim 13, wherein
the instructions for providing the one or more first-server
commands based upon, at least in part, the one or more
second-server commands, include instructions for sequen-
tially providing the one or more first-server commands in an
order based upon, at least in part, the sequential order of the
second-server commands.

15. The computer program product of claim 14, wherein
the instructions for comparing the one or more first server
output objects to the one or more second server output objects
include instructions for comparing each of the one or more
first-server output objects, returned by the first server in
response to each of the one or more first-server commands, to
the one or more second-server output objects, returned by the
second server in response to the one or more second-server
commands as the one or more first server commands are
sequentially executed; and

mapping an identity of each of the one or more first-server

output objects to an identity of the one or more second-
server output objects as the one or more first server
commands are sequentially executed.

16. The computer program product of claim 9, wherein the
first server includes an online server and the second server
includes an offline server.

17. The method of claim 1, wherein a first server applica-
tion executing commands on the original data set and a sec-
ond server application executing commands on the replicated
data set each use different naming schemes.

18. The computer program product of claim 9, wherein a
first server application executing commands on the original
data set and a second server application executing commands
on the replicated data set each use different naming schemes.

#* #* #* #* #*

